Natural language processing with dynamic classification improves P300 speller accuracy and bit rate.

نویسندگان

  • William Speier
  • Corey Arnold
  • Jessica Lu
  • Ricky K Taira
  • Nader Pouratian
چکیده

The P300 speller is an example of a brain-computer interface that can restore functionality to victims of neuromuscular disorders. Although the most common application of this system has been communicating language, the properties and constraints of the linguistic domain have not to date been exploited when decoding brain signals that pertain to language. We hypothesized that combining the standard stepwise linear discriminant analysis with a Naive Bayes classifier and a trigram language model would increase the speed and accuracy of typing with the P300 speller. With integration of natural language processing, we observed significant improvements in accuracy and 40-60% increases in bit rate for all six subjects in a pilot study. This study suggests that integrating information about the linguistic domain can significantly improve signal classification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

سنجش عملکرد سامانه‌های رابط مغز و رایانه P300 Speller به‌ازای ماتریس نمایش ردیف و یا ستون (RCP) و نمایش حروف زبان فارسی

As a Brain computer interface system, BCI P300 Speller tries to help disabled people and patients to regain some of their lost ability with allowing communication via typing. The ability of personalization is one of the most important features in a BCI system, so the typing language as a personalization factor is an important feature in a BCI speller. Most prior researches on P300 Speller has f...

متن کامل

Improved P300 speller performance using electrocorticography, spectral features, and natural language processing.

OBJECTIVE The P300 speller is a system designed to restore communication to patients with advanced neuromuscular disorders. This study was designed to explore the potential improvement from using electrocorticography (ECoG) compared to the more traditional usage of electroencephalography (EEG). METHODS We tested the P300 speller on two epilepsy patients with temporary subdural electrode array...

متن کامل

Use of a Green Familiar Faces Paradigm Improves P300-Speller Brain-Computer Interface Performance

BACKGROUND A recent study showed improved performance of the P300-speller when the flashing row or column was overlaid with translucent pictures of familiar faces (FF spelling paradigm). However, the performance of the P300-speller is not yet satisfactory due to its low classification accuracy and information transfer rate. OBJECTIVE To investigate whether P300-speller performance is further ...

متن کامل

Evidence build-up facilitates on-line adaptivity in dynamic environments: example of the BCI P300-speller

We consider a P300 BCI application where the subjects can write figures and letters in an unsupervised fashion. We (i) show that a generic speller can attain the state-of-the-art accuracy without any training phase or calibration and (ii) present an adaptive setup that consistently increases the bit rate for most of the subjects.

متن کامل

Incorporating advanced language models into the P300 speller using particle filtering.

OBJECTIVE The P300 speller is a common brain-computer interface (BCI) application designed to communicate language by detecting event related potentials in a subject's electroencephalogram signal. Information about the structure of natural language can be valuable for BCI communication, but attempts to use this information have thus far been limited to rudimentary n-gram models. While more soph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neural engineering

دوره 9 1  شماره 

صفحات  -

تاریخ انتشار 2012